(1)
$$a_{n+1} = 2a_n + 5 \cdot 3^n$$
 の両辺を 3^{n+1} で割ると $\frac{a_{n+1}}{3^{n+1}} = \frac{2}{3} \cdot \frac{a_n}{3^n} + \frac{5}{3}$

$$\frac{a_n}{3^n} = b_n \$$
 $\geq \$ $\Rightarrow \ \$ $b_{n+1} = \frac{2}{3}b_n + \frac{5}{3}$

これを変形すると
$$b_{n+1}-5=\frac{2}{3}(b_n-5)$$

$$\sharp \, t \qquad b_1 - 5 = \frac{a_1}{3} - 5 = 1 - 5 = -4$$

よって,数列 $\{b_n-5\}$ は初項-4,公比 $\frac{2}{3}$ の等比数列であるから

したがって
$$a_n = 5 \cdot 3^n - 4 \cdot \left(\frac{2}{3}\right)^{n-1} \cdot 3^n = {}^{7}5 \cdot 3^n - {}^{4}6 \cdot 2^n$$

(2)
$$a_{n+2}+10a_{n+1}+25a_n=0$$
 を変形すると $a_{n+2}+5a_{n+1}=-5(a_{n+1}+5a_n)$

よって
$$\alpha = {}^{\circ}5$$
, $\beta = -{}^{x}5$

$$b_n = a_{n+1} + 5a_n$$
 であるから $b_{n+1} = -5b_n$

$$\sharp \hbar \qquad b_1 = a_2 + 5a_1 = 5 + 5 \cdot 1 = 10$$

よって、数列 $\{b_n\}$ は初項10、公比-5の等比数列であるから

$$b_n = {}^{\pm}10 \cdot (-5)^{n-1}$$

ゆえに
$$a_{n+1} = -5a_n + 10 \cdot (-5)^{n-1}$$

両辺を
$$(-5)^{n+1}$$
で割ると
$$\frac{a_{n+1}}{(-5)^{n+1}} = \frac{a_n}{(-5)^n} + \frac{2}{5}$$

また
$$\frac{a_1}{-5} = -\frac{1}{5}$$

よって,数列 $\left\{\frac{a_n}{\left(-5\right)^n}\right\}$ は初項 $\left(-\frac{1}{5}\right)$,公差 $\left(\frac{2}{5}\right)$ の等差数列であるから

$$\frac{a_n}{(-5)^n} = -\frac{1}{5} + \frac{2}{5}(n-1) = \frac{2}{5}n - \frac{3}{5}$$

したがって
$$a_n = \frac{^{2}2}{^{*}5} \cdot n \cdot (-5)^n - \frac{^{2}3}{^{2}5} \cdot (-5)^n$$

 ℓ は x 軸に垂直でないから、その方程式は $y = k(x-a) + \frac{1}{2}a^2$ とおける。

これと
$$y = \frac{1}{2}x^2$$
 から y を消去して $\frac{1}{2}x^2 = k(x-a) + \frac{1}{2}a^2$

整理すると $x^2-2kx+2ak-a^2=0$

判別式を
$$D$$
 とすると $\frac{D}{4}$ $=$ $(-k)^2 - (2ak - a^2) = (k - a)^2 = 0$

よって k=a

したがって、 ℓ の方程式は $y=ax-\frac{1}{2}a^2$

$$\mathbf{R}\left(X,\ Y
ight)$$
 とすると,Q \mathbf{R} の中点 $\left(rac{X+a}{2},\ rac{Y+b}{2}
ight)$ が

$$\ell$$
 上にあるから $\frac{Y+b}{2} = a \cdot \frac{X+a}{2} - \frac{1}{2}a^2$

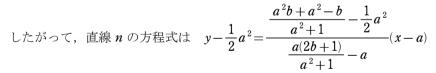
整理すると
$$Y = aX - b$$
 …… ①

QR上ℓ であるから
$$\frac{Y-b}{X-a} \cdot a = -1$$

整理すると X+aY=a(b+1) ……②

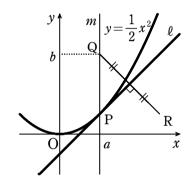
①,② を解くと
$$X = \frac{a(2b+1)}{a^2+1}$$
, $Y = \frac{a^2b+a^2-b}{a^2+1}$

よって、点 R の座標は
$$\left(\frac{a(2b+1)}{a^2+1}, \frac{a^2b+a^2-b}{a^2+1}\right)$$



すなわち
$$y = \frac{a^2 - 1}{2a}x + \frac{1}{2}$$

この直線はaの値によらず、常に定点 $\left(0, \frac{1}{2}\right)$ を通る。



③解答 (ア)
$$\left(\frac{3}{4}, -\frac{1}{2}, \frac{7}{4}\right)$$
 (イ) $\left(\frac{8}{7}, \frac{2}{7}, \frac{4}{7}\right)$ (ウ) $\frac{2\sqrt{21}}{7}$ (エ) $\frac{3\sqrt{21}}{2}$

(1)
$$\overrightarrow{OP} = s\overrightarrow{OA} + t\overrightarrow{OB} + u\overrightarrow{OC} (s + t + u = 1)$$
 と表される.

すなわち
$$\overrightarrow{OP} = s(1, 2, 0) + t(2, 0, -1) + u(0, -2, 4)$$

= $(s+2t, 2s-2u, -t+4u)$

また、 $\overrightarrow{OP} = k\overrightarrow{OD}$ (k は実数) と表される.

すなわち
$$\overrightarrow{OP} = k(3, -2, 7) = (3k, -2k, 7k)$$

よって
$$s+2t=3k$$
, $2s-2u=-2k$, $-t+4u=7k$

s, t, u を k で表すと s=k, t=k, u=2k

$$s+t+u=1$$
 であるから $k+k+2k=1$ よって $k=\frac{1}{4}$

したがって
$$\overrightarrow{OP} = \left(\frac{3}{4}, -\frac{1}{2}, \frac{7}{4}\right)$$
 ゆえに $P\left(\frac{3}{4}, -\frac{1}{2}, \frac{7}{4}\right)$

(2)
$$\overrightarrow{OH} = s'\overrightarrow{OA} + t'\overrightarrow{OB} + u'\overrightarrow{OC} (s' + t' + u' = 1)$$
 と表される.

また, 垂線 OH は $\triangle ABC$ に垂直であるから $\overrightarrow{OH} \bot \overrightarrow{AB}$, $\overrightarrow{OH} \bot \overrightarrow{AC}$

すなわち
$$\overrightarrow{OH} \cdot \overrightarrow{AB} = 0$$
, $\overrightarrow{OH} \cdot \overrightarrow{AC} = 0$

$$\overrightarrow{OH} = (s' + 2t', 2s' - 2u', -t' + 4u'), \overrightarrow{AB} = (1, -2, -1), \overrightarrow{AC} = (-1, -4, 4)$$
 であるから

$$\overrightarrow{OH} \cdot \overrightarrow{AB} = s' + 2t' - 2(2s' - 2u') - (-t' + 4u')$$

= $-3s' + 3t'$

$$\overrightarrow{OH} \cdot \overrightarrow{AC} = -(s'+2t') - 4(2s'-2u') + 4(-t'+4u')$$

= $-9s'-6t'+24u'$

$$\sharp \circ \tau -3s'+3t'=0, -9s'-6t'+24u'=0$$

ゆえに
$$t'=s'$$
, $u'=\frac{5}{8}s'$

$$s'+t'+u'=1$$
 であるから $s'+s'+\frac{5}{8}s'=1$ よって $s'=\frac{8}{21}$

このとき
$$t' = \frac{8}{21}$$
, $u' = \frac{5}{21}$

したがって
$$\overrightarrow{OH} = \left(\frac{8}{7}, \frac{2}{7}, \frac{4}{7}\right)$$
 ゆえに $H\left(\frac{8}{7}, \frac{2}{7}, \frac{4}{7}\right)$

$$\sharp \hbar |\overrightarrow{OH}| = \frac{2}{7} \sqrt{4^2 + 1^2 + 2^2} = \frac{2\sqrt{21}}{7}$$

更に
$$\triangle ABC = \frac{1}{2}\sqrt{|\overrightarrow{AB}|^2|\overrightarrow{AC}|^2 - (\overrightarrow{AB} \cdot \overrightarrow{AC})^2}$$

= $\frac{1}{2}\sqrt{6 \cdot 33 - 3^2} = \frac{3\sqrt{21}}{2}$

よって、四面体 OABC の体積 V は

$$V = \frac{1}{3} \triangle ABC \cdot OH = \frac{1}{3} \cdot \frac{3\sqrt{21}}{2} \cdot \frac{2\sqrt{21}}{7} = 3$$

| 4 | 解答 (ア) 30 (イ) 12 (ウ) 6 (エ) 12 (オ) 10

- (1) $\frac{5!}{2!2!} = 730$ (通り)
- (2) 隣り合う AA をまとめて A'で表すと、求める並べ方は、A'、B、B、X の順列であるから $\frac{4!}{2!} = ^{4}12 \ (通り)$
- (3) 隣り合う AA をまとめて A', BB をまとめて B' で表すと、求める並べ方は、A', B', X の順列であるから $3! = {}^{\flat}6$ (通り)
- (4) (2) と同様に、BとBが隣り合う並べ方は 12通り これと(1)、(3)により、求める並べ方は

$$30-12\times2+6=$$
[±]12 (通り)

(5) ○3個, B2個を1列に並べ, 3個の○は左からA, X, A とすればよいから

$$\frac{5!}{3!2!} = ^{1}10$$
 (通り)

放物線 A は、2 点 (11, 0)、(5, 0) を通るから、その方程式は y = a(x-11)(x-5) とおける。

すなわち $A: y=ax^2-16a+55a$

よって b=-16a, c=55a ······①

このとき、放物線 B の方程式は y=a(x+8-11)(x+8-5)+d

 $tabbox{ } v=ax^2-9a+d$

Bの頂点の座標は (0, -9a+d)

ゆえに $-9a+d=-9\cdots$ ②

また、放物線 A の方程式は $y=a(x-8)^2-9a$ となるから、頂点の座標は (8, -9a)

よって、
$$\frac{-9a+9}{8-0} = -\frac{9}{4}$$
 であるから $a=3$

①, ② $\hbar = -48$, c = 165, d = 18

また、2 頂点を結んだ直線の方程式は $y=-\frac{9}{4}x-9$

放物線 B の方程式は $y=3x^2-9$

長方形と放物線 B の接点のうち、x 座標が正となる点の座標を $(x, 3x^2-9)$ とおくと

$$S = 2x(9-3x^2) = -6x^3 + 18x \ (0 < x < \sqrt{3})$$

$$S' = -18x^2 + 18 = -18(x+1)(x-1)$$

 $0 < x < \sqrt{3}$ における S の増減表は次のようになる.

x	0		1		$\sqrt{3}$
S'		+	0	_	
S		1	極大	N	

よって、Sはx=1のとき最大値 12をとる.

このとき、接点の座標は(1, -6)